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Abstract. Data mining has recently attracted attention as a set of efficient tech-
niques that can discover patterns from huge data. More recent advancements in
collecting massive evolving data streams created a crucial need for dynamic data
mining. In this paper, we present a genetic algorithm based on a new representa-
tion mechanism, that allows several phenotypes to be simultaneously expressed
to different degrees in the same chromosome. This gradual multiple expression
mechanism can offer a simple model for a multiploid representation with self-
adaptive dominance, including co-dominance and incomplete dominance. Based
on this model, we also propose a data mining approach that considers the data as a
reflection of a dynamic environment, and investigate a new evolutionary approach
based on continuously mining non-stationary data sources that do not fit in main
memory. Preliminary experiments are performed on real Web clickstream data

1 Introduction and Motivation

1.1 The Need for “Adaptive Representation and Dynamic Learning” in Data
Mining

Data mining has recently attracted attention as a set of efficient techniques that can dis-
cover patterns from huge data sets, and thus alleviate the information overload problem.
The further advancement in data collection and measurements led to an even more drastic
proliferation of data, such as sensor data streams, web clickstreams, network security
data, news and intelligence feeds in form of speech, video and text, which in addition to
scalability challenges, further stressed the fact that the environment in which we live is
constantly changing. Thus, there is a crucial need for dynamic data mining, Specifically,
within the context of data mining, there are two scenarios that call on dynamic learning:

(i) Scenario 1: The data supporting the learning task (including its nature, structure,
and distribution), the goals of the learning task, or the constraints governing the feasible
solutions for this task may be changing. A typical example today lies in mining sensor
and data streams.

(ii) Scenario 2: The mechanism that is used to process the data for data mining may
mimic the previous dynamic learning scenario. For instance, the size of the data may be
huge, and thus it cannot fit in main memory, and we opt to process it incrementally, one
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sample at a time, or in chunks of data. In this case, there is no warranty that the different
increments of data will reflect the same distribution. Hence this can be mapped to the
previous dynamic learning scenario.

The type of flexibility and adaptation that is called for when learning in dynamic
environments is nowhere to be found more than in nature itself. For instance, the way
that DNA gets transcribed and synthesized into elaborate protein structures is dynamic.
Genes get promoted and suppressed with varying degrees and in a dynamic way that
adapts to the environment even within a single lifetime.

1.2 Contributions and Organization of This Paper

In this paper, we present the Soft Structured Genetic Algorithm (s2GA) algorithm, and
illustrate its use for non-stationary objective function optimization. We also adapt this ap-
proach to evolutionary data mining in non-stationary environments. s2GA uses a gradual
multiple expression mechanism that offers a simple model for a multiploid representation
with self-adaptive dominance, including co-dominance, where both haploid phenotypes
are expressed at the same time, as well as incomplete dominance, where a phenoptypical
trait is expressed only to a certain degree (such as in certain flowers’ colors).

Justifying the Choice of Multiploidy as the Underlying Adaptation Mechanism.
Some work on dynamic optimization has solely relied on hypermutation to recover from
environmental changes [1]. Furthermore, Lewis et al. [2] have empirically shown that
high mutation rates, applied when an enviroment change is detected, can outperform
a simple diploid representation scheme. However, in many data mining problems, the
dimensionality is extremely high, ranging in the millions in the case of web usage and
gene sequence data. For example, each URL on a website can be mapped to a different
attribute. This will lead to an excessive devotion of the computing resources just for the
bit mutations, and slow the search process. Moreover, the comparative results in [2] were
based on diploidy with a simple adaptive dominance mechanism and uniform crossover
that does not take into account the arbitrary permutations of the subchromosomes within
the diploid chromosome. In fact, most existing multiploidy schemes perform the cros-
sover in a blind way between two parent chromosomes without any consideration to the
important information that differentiates each subchromosome from the others. When
the dominance genes are evolved together with the structural information genes, this
blind crossover can be shown to cause all the chromosomes and even their subchromo-
somes to converge to an identical copy in the long term. This in turn defeats the purpose
of multiploidy which serves primarily as a memory bank and a source of diversity. For
these reasons, we present a new specialized crossover that avoids this problem by en-
couraging crossover between only the most similar subchromosomes, hence preserving
the diversity within each chromosome.

Problems with the Current State of the Art in Web Usage Mining and New Con-
tributions. The majority of web mining techniques (see Section 2.2) assume that the
entire Web usage data can reside in main memory. This can be a disadvantage for sy-
stems with limited main memory, since the I/O operations would have to be extensive
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to shuffle chunks of data in and out, and thus compromise scalability. Today’s web sites
are a source of an exploding amount of clickstream data that can put the scalability of
any data mining technique into question. Moreover, the Web access patterns on a web
site are very dynamic in nature, due not only to the dynamics of Web site content and
structure, but also to changes in the user’s interests, and thus their navigation patterns.
The access patterns can be observed to change depending on the time of day, day of
week, and according to seasonal and external events. As an alternative to locking the
state of the Web access patterns in a frozen state depending on when the Web log data was
collected and preprocessed, we propose an approach that considers the Web usage data
as a reflection of a dynamic environment, and investigate a new evolutionary approach,
based on a self-adaptive multiploidy representation, that continuously learns dynamic
Web access patterns from non-stationary Web usage environments. This approach can
be generalized to fit the needs of mining dynamic data or huge data sets that do not fit
in main memory.

Organization of this Paper. The remainder of this paper is organized as follows. We
start with a background overview in Section 2. Then, in Section 3, we present a modi-
fication to the GA, based on a soft multiple Expression mechanism, for non-stationary
function optimization. Based on the soft multiple Expression GA model, we present in
Section 4, an evolutionary approach, called DynaWeb, for mining dynamic Web pro-
files automatically from changing clickstream environments. In Section 5, we present
simulation results for synthetic non-stationary fitness functions. Then, in Section 6, we
present experimental results that illustrate the performance of DynaWeb in mining pro-
files from dynamic environments on a real website. Finally, we present our conclusions
in Section 7.

2 Background

2.1 Genetic Optimization in Dynamic Environments

Dynamic objective functions can make the evolutionary search extremely difficult. Some
work has focused on altering the evolutionary process, including the selection strategy,
genetic operators, replacement strategy, or fitness modification [3,2,1], while other work
focused on the concept of genotype to phenotype mapping or gene expression. This line
of work includes models based on diploidy and dominance [4], messy GAs [5], Gene
Expression Messy GA [6], overlapping genes such as in DNA coding methods [7,8,
9], the floating point representation [10], and the structured GA [11]. In particular, the
structured GA (sGA) uses a structured hierarchical chromosome representation, where
lower level genes are collectively switched on or off by specific higher level genes.
Genes that are switched on are expressed into the final phenotype, while genes that
are switched off do not contribute to coding the phenotype. A modification of the sGA
based on the concept of soft activation mechanism was recently proposed with some
preliminary results in [12]. This approach is detailed in Section 3.
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2.2 Mining the Web for User Profiles

The World Wide Web is a hypertext body of close to 10 Billion pages (not including
dynamic pages, crucial for interaction with Web Databases and Web services) that con-
tinues to grow at a roughly exponential rate in terms of not only content (total number
of Web pages), but also reach (accessibility) and usage (user activity). Data on the Web
exceeds 30 Terabytes on roughly three million servers. Almost 1 million pages get ad-
ded daily, and typically, several hundred Gigabytes are changed every month. Hence,
the Web constitutes one of the largest dynamic data repositories. In addition to its ever-
expanding size and lack of structure, the World Wide Web has not been responsive to
user preferences and interests. Personalization deals with tailoring a user’s interaction
with the Web information space based on information about him/her, in the same way
that a reference librarian uses background knowledge about a person or context in order
to help them better. The concept of contexts can be mapped to distinct user profiles. Mass
profiling is based on general trends of usage patterns (thus protecting privacy) compiled
from all users on a site, and can be achieved by mining user profiles from the historical
web clickstream data stored in server access logs. A web clickstream is a virtual trail
that a user leaves behind while surfing the Internet, such as a record of every page of
a Web site that the user visits. Recently, data mining techniques have been applied to
discover mass usage patterns or profiles from Web log data [13,14,15,16,17]. In [17], a
linear complexity Evolutionary Computation technique, called Hierarchical Unsuper-
vised Niche Clustering (H-UNC), was presented for mining both user profile clusters
and URL associations in a single step. The evolutionary search allowed HUNC to ex-
ploit a subjective domain specific similarity measure, but it was limited to a stationary
environment.

3 The Soft Multiple Expression Genetic Algorithm (s2GA)

In the Soft Structured Genetic Algorithm (s2GA), the lower level or structural infor-
mation genes are no longer limited to total expression or to none. Instead, they can
be expressed to different continuous degrees. Hence, several phenotypes can be simul-
taneously expressed in the same chromosome, but to different degrees. This gradual
multiple expression mechanism can offer a simple model for a multiploid representation
with self-adaptive dominance, including co-dominance, where both haploid phenotypes
are expressed at the same time, as well as incomplete dominance, where a phenopty-
pical trait is expressed only to a certain degree (such as in the color of some flowers).
Compared to the structured GA, in the soft activation mechanism, the activation of the
subchromosomes in the lower levels is not a crisp value (active or not). Instead, every
subchromosome has a soft activation/expression value in the interval [0, 1]. This allows
the expression of multiple subchromosomes. To get this soft activation, the number of
redundant subchromosomes is fixed to NA. The dominance mechanism, traditionally
used to decide the final phenotype that gets expressed is not fixed a priori, but rather
adapts by evolution to express the best-fit subchromosomes depending on the current
environment. The dominance or activation value for each subchromosome is controlled
by a soft activation gene, Ai, a real number in the interval [0, 1]. The values for the
soft activations are obtained as follows. In general, if there are NA soft activation genes
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Ai, i ∈ 1, 2, · · · , NA, each encoded on la bits, the value ai for the soft activation gene
Ai is:

ai =

{
Di∑NA

j=1 Dj

, if
∑NA

j=1 Dj �= 0
1

NA
, if

∑NA

j=1 Dj = 0
(1)

Where Dj is the decimal value of the la bits coding the Aj soft activation gene. The-
refore ai ∈ [0, 1], and

∑NA

i=1 ai = 1. This has the advantage of keeping a chromosome
with the same data encoding (binary) for both the activation and the information genes.
The activation genes are constrained to sum to 1 in the preliminary model, but this con-
straint is not required. Hence,

∑NA

i=1 ai = 1. But they can be nonzero simultaneously.
This means that several different expressions can co-exist in the same population, same
generation, and same chromosome. It is this feature that is expected to allow for gradual
adaptations of the genome to dynamic environments. The fitness computation of this ge-
netic algorithm can consider all the subchromosome expressions in order to compute an
aggregate fitness for the entire chromosome. This is accomplished by a weighted fitness.
However, other aggregation mechanisms, such as the fitness of the maximally activa-
ted subchromosome, or the maximum of the fitnesses among the sufficiently activated
subchromosomes, are possible. The weighted fitness is given by

f =
NA∑
i=1

ai fi. (2)

Modified Two Point Crossover. In this modification, first, a usual two point crossover
is made on the structural genes. The crossover points are selected such that an offspring
inherits the same proportion of activation bits from the parent, as the proportion of
structural bits, that is inherited. Then, a usual two point crossover is performed on the
activation genes.

A New Specialized Crossover for Multiploid Chromosomes. This specialization per-
forms an independent crossover for each information subchromosome. First, a measure
of the distance (the phenotypical distance) between the subchromosomes of the parents
is computed, and each subchromosome from one parent is paired with the most similar
unpaired subchromosome from the other parent. Next, a one point crossover between
the paired subchromosomes is done (some care is taken to guarantee that all the sub-
chromosomes participate in the crossover). Finally, the activation genes are crossed, by
performing a one point crossover between each pair of corresponding activation strings
(the correspondence is obtained from the matching between the paired subchromoso-
mes).

Advantages of the soft activation mechanism. The soft multiple expression and ac-
tivation mechanism is expected to have the following advantages:
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1. All the genotype data in the chromosome can be expressed to some degree. Howe-
ver, this level of expression can depend on the goodness and activation of all the
subchromosomes.

2. The inherently redundant information, and the soft activation mechanism provide a
robust chromosome. In order to damage the quality of the chromosome, a significant
change must concurrently disrupt the data in the activation and information genes.

3. Depending on the activation values, and on how they are interpreted, more than
one soft genotype can map to a single phenotype. Similarly, a single soft genotype
can map to several phenotypes. This property has been lately recognized as very
desirable to solve highly complex optimization problems [6].

4 DynaWeb: Mining Web Usage Data in Dynamic Environments

4.1 Extracting Web User Sessions

The access log for a given Web server consists of a record of all files accessed by users.
Each log entry consists of: (i) User’s IP address, (ii) Access time, (iii) URL of the
page accessed, · · ·, etc. A user session consists of accesses originating from the same
IP address within a predefined time period. Each URL in the site is assigned a unique
number j ∈ {1, . . . , NU}, where NU is the total number of valid URLs. Thus, the
ith user session is encoded as an NU -dimensional binary attribute vector s(i) with the
property

s
(i)
j =

{
1 if the user accessed the jth URL during the ith session
0 otherwise

4.2 Assessing Web User Session Similarity

Due to the asymmetric binary nature of the URL attributes, in this paper, we use the
cosine similarity measure between two user-sessions, s(k) and s(l), given by Skl =

∑Nu
i=1 s

(k)
i s

(l)
i√

∑Nu
i=1 s

(k)
i

√
∑Nu

i=1 s
(l)
i

. Finally, this similarity is mapped to the dissimilarity measure

d2
s(k, l) = (1 − Skl)

2
.

4.3 Mining Web User Profiles by Clustering Web Sessions

The proposed dynamic evolutionary Web mining algorithm, DynaWeb uses the s2GA al-
gorithm in representing and evolving the population. It uses the folowing representation:
Each chromosome consists of NA subchromosomes. Each subchromosome encodes a
possible session prototype or profile that consists of a binary string of length NU URLs,
with same format as the binary session attribute vectors si defined in Section 4.1. Hence,
each chromosome may encode different profiles, where each profile can be expressed
to a certain degree in [0, 1]. The cosine based dissimilarity measure, defined in Section
4.2, is used to compute the distance between session data and candidate profiles.

The fitness value, fi, for the ith candidate profile, Pi, is defined as the density of a
hypothetical cluster of Web sessions with Pi as a summarizing prototype or medoid. It



Dynamic and Scalable Evolutionary Data Mining 1407

is defined as fi =
∑N

j=1 wij

σ2
i

, where wij is a robust weight that measures how typical a

session sj is in the ith profile, and is given by

wij = exp− d2
ij

2σ2
i

. (3)

σ2
i is a robust measure of scale (dispersion) for the ith profile, d2

ij is a distance
measure from session sj to profile Pi, and N is the number of data points. Note that the
robust weights wij will be small for outliers, hence offering a means of distinguishing
between good data and noise. The scale parameter that maximizes the fitness value for

the ith profile can be found by setting ∂fi

∂σ2
i

= 0 to obtain σ2
i =

∑N
j=1 wijd2

ij

2
∑N

j=1 wij
. To get

unbiased scale estimates, the above scale measure should be compensated by a factor of
2, which results in

σ2
i =

∑N
j=1 wijd

2
ij∑N

j=1 wij

. (4)

Therefore, wij and σ2
i will be alternatively updated using (3) and (4) respectively,

for 3 iterations for each individual, starting with an initial value of σ2
initial, and using

the previous values of σ2
i to compute the weights wij . This hybrid genetic optimization

converges much faster than a purely genetic search. More details about the underlying
mechanism for stationary environments can be found in [18] and [17].

5 Simulation Results for Synthetic Non-stationary Fitness
Functions

The s2GA was applied to the alternating optimization of two non-overlapping objective
functions, F1 and F2, defined in the interval [0, 1], and each having a single peak with

height = 1. These functions are translations of the function F (x) =
(

27(−x3+x2)
4

)10
,

and given by F1(x) = F (0.8 − x) and F2(x) = F (x − 0.2). The non-stationary opti-
mization was based on periodical swappings between F1 and F2, as fitness functions,
every n = 15 generations for a total of 300 generations. In all experiments, the popula-
tion size was 200, the crossover rate was 0.9, and the mutation rates were 0.01 and 0.05
for the structural and activation bits, respectively. First, we plot the proportion of Good
chromosomes (individuals that accomplish more than 80% of the optimal fitness value)
for each one of the evaluated functions versus the generation number. Next, we plot the
average and best chromosome performance (defined below) against the generation num-
ber. The entire procedure was repeated 30 times and average results are reported in the
plots. The s2GA representation consisted of 2 binary subchromosomes, each consisting
of 10 structural information bits encoding a real number in [0, 1]. Each subchromosome
was expressed by a 3-bit activation gene, resulting in a total chromosome length of 26.

The fitness function of the chromosome was defined as the weighted (by the activa-
tion values) aggregation of the fitnesses of all their subchromosomes. However, a single
chromosome truly expresses different phenotypes. This led us to define the following
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measures: (i) Activation threshold, α: Sufficient activation value for considering a sub-
chromosome as “activated”. In our experimentats, we used α = 0.4, i.e., 80% of the
expected activation per gene, (i.e., 0.8(1/NA) given a uniform activation distribution on
NA subchromosomes). (ii) Subchromosome fitness: subchromosome fitness evaluated
using the current objective function. (iii) Best Expressed Subchromosome: subchro-
mosome with highest subchromosome fitness among the ones with activation exceeding
α. (iv) Chromosome performance: Fitness of the Best Expressed Subchromosome. In
the new specialized crossover, special care is taken so that only similar subchromosomes
are combined, regardless of their order inside the chromosome. From the point of view
of exploitation, this recombination operator performs very well, contributing to the fast
adaptation of the population to each new environment (see Figs. 1(c) and (d)).

Fig. 1. Results for non-stationary function optimization, averaged over 30 runs (a,b) with modi-
fied two point crossover versus (c,d) with specialized crossover. (a,c) show Proportion of Good
subchromosomes, while (b,d) show Average and Best Chromosome Performance.

6 Dynamic Web Usage Mining Experimental Results

The real clickstream data used in this section consists of 1703 sessions and 369 URLs
extracted from Web logs of a department’s website. The following experiment was
performed to illustrate how an evolutionary algorithm can be used for mining dynamic
data to discover Web user profiles. In order to simulate a non-stationary environment for
Web mining in a controlled experiment, we used a coarse partition previously obtained
and validated using H-UNC [17], and partially listed in Table 1, in order to consider
the sessions that were assigned to each cluster as representing a different environment.
Thus, each environment corresponds to a different Web usage trend. The sessions from
these clusters were split into 20 different clickstream data sets, each one consisting of the
sessions that are closest to one of the 20 profiles. The Genetic algorithm tried to evolve
profiles, while facing a changing data set obtained by alternating the data from each of
the 20 usage trends. The process was repeated for several epochs, each time presenting
the succession of different data sets in alternation, simulating non-stationary observed
usage trends.
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Table 1. Summary of some usage trends previously discovered using Hierarchical Unsupervised
Niche Clustering (only URLs with top 3 to 4 relevance weights shown in each profile)

i
∣
∣
∣PT i

∣
∣
∣ PT i

0 106 {0.99 - /people index.html}, {0.98 - /people.html}, {0.97 - /faculty.html}

1 104 {0.99 - /}, {1.00 - /cecs computer.class}

2 177 {0.90 - /courses index.html}, {0.88 - /courses100.html}, {0.87 - /courses.html} , {0.81 - /}

3 61 {0.80 - /}, {0.48 - /degrees.html}, {0.23 - /degrees grad.html}

4 58 {0.97 - /degrees undergrad.html}, {0.97 - /bsce.html}, {0.95 - /degrees index.html}

5 50 {0.56 - /faculty/springer.html}, {0.38 - /faculty/palani.html}

6 116 {0.91 - /˜saab/cecs333/private}, {0.78 - /˜saab/cecs333}

12 74 {0.57 - /˜shi/cecs345}, {0.45 - /˜shi/cecs345/java examples}, {0.46 - /˜shi/cecs345/Lectures/07.html}

13 38 {0.82 - /˜shi/cecs345}, {0.47 - /˜shi}, {0.34 - /˜shi/cecs345/references.html}

14 33 {0.55 - /˜shi/cecs345}, {0.55 - /˜shi/cecs345/java examples}, {0.33 - /˜shi/cecs345/Projects/1.html}

15 51 {0.92 - /courses index.html} , {0.90 - /courses100.html}, {0.86 - /courses.html}, {0.78 - /courses200.html}

16 77 {0.78 - /˜yshang/CECS341.html}, {0.56 - /˜yshang/W98CECS341}, {0.29 - /˜yshang}

19 120 {0.27 - /access} , {0.23 - /access/details.html}

We simulated the following dynamic scenarios:
scenario 1 (straight): We presented the sessions to DynaWeb one profile at a time for
50 generations each: sessions assigned to trend 0, then sessions assigned to trend 1, · · ·,
until trend 19.
scenario 2 (reverse): We presented the sessions to DynaWeb one profile at a time for 50
generations each, but in reverse order: sessions assigned to trend 19, · · ·, until sessions
assigned to trend 0.
scenario 3 (multi-trend): The sessions are presented in bursts of simultaneous multiple
usage trends for 200 generation per multi-trend: First the sessions in profiles 7 and 8 are
presented together for 200 generations, followed by the sessions in profiles 9 and 14,
and finally by profiles 15 and 16, to test diversity as well as dynamic adaptation.

The proposed algorithm, DynaWeb, was applied with specialized crossover, a popu-
lation of NP = 50 individuals, initialized by selecting sessions randomly from the input
data set, and with chromosome encoding based on 5 subchromosomes, each activated
by one of NA = 5 continuous valued activation genes. Each activation gene is enco-
ded on 3 bits. The crossover probability was 0.9 per subchromosome, and the mutation
probability was 0.01 per bit for the structural genes, and 0.05 per bit for the activation
genes. The fitness of a chromosome was computed as the fitness of the subchromosome
with maximum activation value in the case of scenarios 1 and 2, and as the combined
fitness for scenario 3 to encourage diversity in this multimodal scenario. The ability
of the population to evolve in a dynamic way when facing each new environment was
evaluated in each generation by comparing the good individuals in the population to the
ground-truth profiles, PT i, (i = 0, · · · , 19). To do this, we defined as good individuals,
those individuals that have a combined fitness exceeding (fmax + favg)/2, where fmax

and favg are the maximal and average fitness in the current generation, respectively.
Before comparing an individual to the ground truth profiles, an expressed phenotype
must first be extracted. In our case, the active (i.e., with activation gene value > α)
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subchromosome with highest fitness, was used to yield the final expressed phenotype. It
is this phenotype that is compared with each of the ground-truth profiles in each gene-
ration. We do this by computing the cosine similarity between the phenotype expressed
by each good chromosome and each of the ground-truth profiles, PT i, i = 0, · · · , 19.
The similarities computed using all the good chromosomes are averaged in each gene-
ration, to yield measures Ŝi for each ground-truth profile, PT i, i = 0, · · · , 20. These
measures are used to assess whether the evolution is able to adapt to each change in the
environment. Ideally, adaptation to the ith environment is quantified by the fact that Ŝi

gradually becomes higher than all other Ŝj , j �= i.

The above procedure was repeated 20 times and the results are averaged. Stochastic
Viral injection/replacement was used. This phenomenon is different from traditional
evolutionary techniques, in that genetic material from an external organism gets injected
into the host organism’s DNA. It is common with viruses such as the AIDS virus. Given
the nature of our data driven approach, it is expected that this operation will refresh
the current genome with vital and current information from the new environment. This
step stochastically replaced with a 0.3 injection rate per generation the most active
subchromosome from the worst individual of the current population (based on their
combined chromosome fitness) with data randomly selected from the data set being
presented in the current generation. The results for scenario 1: straight order are shown
in Fig. 2 and Fig. 3, for DynaWeb and the Simple GA, respectively. Fig. 2, which is
better viewed in color, shows that as each environment comes into context, the genomes
in the current population gradually evolve to yield candidate profiles that match the
new environment. That is, whenever the environment changes from j to i, the similarity
measure that is the highest gradually switches from being Ŝj to becoming Ŝi. Hence, the
genome succeeds in tracking the dynamic web usage trends, which is the desired goal.We
have also observed a successful adaptation of the expression/activation genes, switching
between different parts of the chromosome to track the changing environments. We note
that the average similarity, Ŝi, achieved for certain usage environments (such as profile
19) are relatively low. This is because the sessions in these environments have more
variability, contain more noise, and thus form a less compact cluster, as can be judged
by their lower URL relevance weights in Table 1. Fig. 2 also shows a desired property
in the cross-reaction between overlapping usage trends. For example the first 5 usage
trends overlap significantly since they represent outside visitors to the website, mostly
prospective students, with slightly different interests. Fig. 3 shows that the simple GA
yields a population that is too slow to adapt, and with lower quality.

The results using DynaWeb for scenario 2: reverse order and for scenario 3: multi-
trend are shown in Figure 4 and Figure 5, respectively. Figure 4 shows that the order of
presentation of the environments is not important, since it is merely a vertical reflection
of the evolution for scenario 1. Figure 5 shows the ability of DynaWeb to track multiple
profiles simultaneously, even as they change. Except for the first epoch, the remaining
epochs show a consistent adaptation to the presented usage trends, since the population
achieves highest similarity to the two current usage trends, as compared to the remaining 4
trends. The improvement in adaptation starting from the second cycle shows the presence
of a good memory mechanism that is distributed over the different subchromosomes of
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Fig. 2. Average similarity to ground-truth profiles among good individuals averaged for 20 runs,
for scenario 1 with DynaWeb, NA = 5 subchromosomes, 0.3 injection, for scenario 1 (Straight
order of usage trends)

Fig. 3. Average similarity to ground-truth profiles among good individuals averaged for 20 runs,
for scenario 1 with the Simple GA

Fig. 4. Average similarity to ground-truth profiles among good individuals averaged for 20 runs,
for DynaWeb with NA = 5 subchromosomes, 0.3 injection, for scenario 2 (Reverse order of usage
trends)
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Fig. 5.Average similarity to ground-truth profiles among good individuals averaged for 30 runs, for
DynaWeb with NA = 5 subchromosomes, 0.3 injection, for scenario 3 (alternating multi-usage
trends)

the population, a memory that comes into context, i.e. becomes expressed when it is
relevant in the current context, and goes dormant in other contexts.

7 Conclusion

For many data mining tasks, the subjective objective functions and/or dissimilarity mea-
sure may be non-differentiable. Evolutionary techniques can handle a vast array of
subjective, even non-metric dissimilarities. We proposed a new framework that consi-
ders evolving data, such as in the context of mining stream data, as a reflection of a
dynamic environment which therefore requires dynamic learning. This approach can be
generalized to mining huge data sets that do not fit in main memory. Massive data sets
can be mined in parts that can fit in the memory buffer, while the evolutionary search
adapts to the changing trends automatically. While it is interesting to compare the pro-
posed approach against other standard dynamic optimization strategies, one must keep
in mind that domain knowledge, scalability, and a data-driven learning framework are
crucial to most real life data mining problems, and this in turn may require nontrivial
modifications to most existing techniques including those that are based on adaptive
case-based memories, hypermutation, and simple dominance schemes.
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